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The triangular lattice Ising model with first and second 
neighbour interactions 
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School of Physics, The University of New South Wales, Kensington, NSW 2033, Australia 

Received 28 May 1981 

Abstract. We report studies of the critical behaviour of the king model with first and second 
neighbour interactions Jl, J2 on the triangular lattice. High-temperature series have been 
used to determine the locations of the ferromagnetic critical line and the critical line in the 
region (J1 < 0, J2 > 0). On the latter line the ordering susceptibility appears to diverge 
algebraically with the exponent y-2.4. The existence of a sinusoidal phase and an 
associated Lifshitz point are conjectured. 

1. Introduction 

This paper reports a continuation of studies of Ising systems with more than one type of 
interaction. The present author (Oitmaa 1981a) has recently developed a high- 
temperature expansion formalism for such systems. This method has been used to 
derive series expansions for the square lattice Ising model with first and second 
neighbour interactions, and to investigate the critical behaviour of this system (Oitmaa 
1981b). 

Another system, which is of both theoretical and experimental interest, is the 
triangular lattice with first and second neighbour interactions, and the present paper is 
devoted to this topic. The experimental relevance of the model stems from the fact that 
helium adsorbed on graphite can be modelled by a triangular lattice gas with repulsive 
nearest neighbour and attractive next nearest neighbour interactions (Dash 1978 and 
references therein). There is a well known correspondence between a lattice gas and an 
Ising model in an external field. 

Theoretical interest in the model arises from predictions of rather unusual critical 
behaviour in some regions of the phase diagram. In particular, when the first and 
second neighbour interactions are antiferromagnetic and ferromagnetic respectively, as 
in the case of the helium/graphite system, then there are three equivalent ordered states 
and it has been suggested (Alexander 1975) that the critical behaviour should be the 
same as for the three-state Potts model, rather than Ising-like. Monte Carlo studies by 
Mihura and Landau (1977) have been unable to confirm this unequivocally, but have 
revealed the possibility of a new kind of bicritical point as well as other unusual features. 

The Hamiltonian of the system is written as 

%=-J,  pi- JZ c uiui-mh c u i  (1) 
( i i )  Pi1 i 

where JI, Jz, h are respectively the first and second neighbour exchange constants and 
the external field, and the first two summations are over all first and second neighbour 
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pairs on a triangular 1a.ttice of N sites. In the present work we consider only the zero 
field case, h = 0. The first step in understanding the behaviour of this system is to 
determine the nature of the ground state for different values of J 1 ,  J2. This has been 
done by Tanaka and UryQ (1976) (see also Metcalf 1974, Kaburagi and Kanamori 
1978), and is illustrated in figure 1. There are four possible ordered states 

(i) ferromagnetic (F), 
(ii) Potts state (P), 
(iii) alternating up down lines (Al) and 
(iv) alternating double up down lines (A2). 

a )  

Ferromagnetic state( F )  Potts state i P) 

J z  f 

2 - 2 J 1  

@-=J - - L  

Alternating state(A1) Alternating state ( A 2 1  

Figure 1. ( U )  The four possible ordered states at T = 0, ( b )  phase diagram at T = 0 and ( c )  
location of critical lines in the (K,, KZ) plane, for the triangular king model with first and 
second neighbour interactions. 

Along the boundary lines P/A1, A1/A2 and F/A2 there are an infinite number of 
ground states and a non-zero ground-state entropy. We use the terms ‘Potts state’ and 
‘Potts transition’ for the ordered state (ii) and the transition from this state to the 
disordered state although, strictly speaking, it is only in the presence of a field that the 
correspondence to the three-state Potts model is expected to be valid. 

For each of the ordered regions one can define an order parameter, which will vanish 
at some finite temperature Tc(J1, J2) corresponding to a transition to the disordered 
phase. The location of these critical lines can best be discussed in terms of the free 
energy per site f(K1, K2) (Ki = Ji /kBT) .  The nearest neighbour Ising problem has been 
solved exactly (Houtappell950) and has a singularity at the critical coupling KO = $ in 3. 
Thus f ( K 1 ,  K2)  has singularities at the points (KO, 0) and (0, KO) with conventional 
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two-dimensional Ising exponents. These two points lie on a critical line separating the 
ferromagnetic and disordered phases. According to universality one would expect Ising 
exponents along this entire line. There will be other critical lines in the (K1, K2) plane 
separating the other ordered phases from the disordered phase. These lines are shown 
schematically in figure l(c). The main task of the present work is to attempt to locate 
the positions of these various lines and to determine the nature of the singularities along 
them. 

There have been a number of previous studies of this problem. Campbell and 
Schick (1972) have studied the model using the Bethe-Peierls approximation but the 
work of Mihura and Landau (1977) has shown that this approximation does not even 
give qualitatively correct results. Some real space renormalisation group calculations 
have been reported for the nearest neighbour model in a field (Mahan and Claro 1977, 
Schick et a1 1977). These calculations include three-spin interactions in the Hamil- 
tonian, but not second neighbour interactions. There is clearly need for more work in 
this direction. 

The most extensive series work on the model is that of Dalton and Wood (1969), 
who have obtained both high- and low-temperature expansions. High-temperature 
series for the ferromagnetic susceptibility are used to estimate the variation of critical 
temperature with the ratio R = J2 /JI  (J1, J2> 0).  The series are too short to extend the 
analysis to R < 0. The other transitions have not been investigated. 

We have extended the high-temperature series for the ferromagnetic susceptibility 
to 10 terms, and have also obtained the series for the Potts susceptibility to the same 
order. The zero-field free energy series has been obtained to order 11. In 0 2 of the 
paper we discuss the method of derivation of the series and present the coefficient data. 
In 0 3 we describe the analysis of the series and present results for the locations of the 
ferromagnetic and Potts critical lines. Some evidence is found for the possible occur- 
rence of a Lifshitz point. Finally in 9 4 we present our conclusions and indicate areas in 
which further work is required. 

2. Derivation of series 

The techniques for deriving high-temperature series for the king model have been 
described in many articles (see for example Domb 1974). The zero-field free energy 
and susceptibility expansions for the simple Ising model take the form 

03 

-Pf(K) = In 2 + fq In cosh K + ano 
n = l  

m 

x = 1 + 2  cnvn 
n = l  

(3) 

where 4 is the coordination number of the lattice and o is the high-temperature variable 
o = tanh K, with K = J /kBT.  The coefficients a,, cn are given as sums of ‘lattice 
constants’ of graphs with n edges and zero and two vertices of odd degree, respectively. 
The lattice constant of a graph is the coefficient of N in the number of embeddings of the 
graph on the lattice of interest. The graphs which contribute include those with more 
than one component. 

For systems with more than one type of interaction these expansions take a more 
general form. In particular, for the triangular lattice with nearest and next nearest 
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neighbour coupling constants K1 and K2 we can write 

-/3f(K1, K2)  = In 2 + 3 In cosh K1 + 3 In cosh K 2  + amnu Tu; (4) 
m, n 

where u1 = tanh K1, u2 = tanh K2. We have computed the values of the coefficients umn 
for m + tz s 11 and these are given in table 1. The method used was developed by the 

Table 1. Coefficients of high-temperature series. 

( a )  Coefficients am,, in the zero-field free energy expansion, equation (4). 

3 0  2 2 1  6 
4 0  3 3 1  18 
0 4  3 5 0  6 
3 2  120 2 3 114 
6 0  11 5 1 114 
3 3  714 2 4 465 
7 0  24 6 1 270 
4 3  3252 3 4 3 912 

6 2  3942 5 3 12 654 
3 5  20214 2 6 7 521 
9 0  138$ 8 1 1824 
6 3  44490 5 4 102 696 
3 6  100152 2 7 29 874 

10 0 363 9 1 5 202 
7 3  151938 6 4 424 857 
4 6  808992 3 7 480 510 
0 10 363 11 0 990 
9 2  113646 8 3 524 712 
6 5  3603726 5 6 5 130 894 
3 8  2247 144 2 9 462 186 

0 7  24 8 0 554 

0 3  
2 2  
4 1  
0 5  
4 2  
0 6  
5 2  
2 5  
7 1  
4 4  
0 8  
7 2  
4 5  
0 9  
8 2  
5 5  
2 8  

10 1 
7 4  
4 7  
0 11 

27 
48 

6 
432 

11 
1350 
1878 

678 
21 9974 

55; 
11 610 

137 508 

35 541 
7.53 882 
117 837 

15 474 
1 663 200 
4 537 368 

990 

138: 

~~~ ~~~ 

( b )  Coefficients c:,, in the zero-field ferromagnetic susceptibility expansion, equation (5). 

1 0  3 0 1  3 2 0  15 
1 1  36 0 2 15 3 0 69 
2 1  270 1 2 288 0 3 69 
4 0  303 3 1 1644 2 2 2 964 
1 3  1908 0 4 303 5 0 1293 
4 1  8952 3 2 22872 2 3 25 566 
1 4  11304 0 5 1293 6 0 5 409 
5 1  45444 4 2 150516 3 3 242 388 
2 4  190146 1 5 62172 0 6 5 409 
7 0  22287 6 1 220074 5 2 894 042 
4 3  1888668 3 4 2164140 2 5 1277 394 
1 6  324216 0 7 22287 8 0 90 771 
7 1  1029708 6 2 4950336 5 3 12 942 876 
4 4  19645452 3 5 17138316 2 6 7 963 932 
1 7  1624140 0 8 90771 9 0 366 339 
8 1  4692780 7 2 26039922 6 3 81 097 746 
5 4  153511212 4 5 178887024 3 6 124 108 764 
2 7  46884042 1 8 7884072 0 9 366 339 

10 0 1467609 9 1 20947356 8 2 131 708 610 
7 3  475711284 6 4 1078937334 5 5 1 578 261 444 
4 6  1473394656 3 7 838301940 2 8 263 726 322 
1 9  37314900 0 10 1467 609 
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Table 1. (continued). 

(c) Coefficients c:,, in the zero-field Potts susceptibility expansion, equation (6). 

1 0  
1 1  
2 1  
4 0  
1 3  
4 1  
1 4  
5 1  
2 4  
7 0  
4 3  
1 6  
1 1  
4 4  
1 7  
8 1  
5 4  
2 7  
10 0 
7 3  
4 6  
1 9  - 

-1 
-18 
21 
1 

-954 
33 

-5 652 
-204 
18 345 
-37 
6 327 

-162 108 
-1 224 

-812 070 
-3 441 

-436 290 
4 499 739 

-772 
-397 248 

.18 657 450 

64 161 

4 421 739 

0 1  
0 2  
1 2  
3 1  
0 4  
3 2  
0 5  
4 2  
1 5  
6 1  
3 4  
0 7  
6 2  
3 5  
0 8  
7 2  
4 5  
1 8  
9 1  
6 4  
3 7  
0 10 

3 
15 

- 144 
-66 
303 

1293 
513 

-834 

-31 086 
-246 

-68 508 

-4 218 
-518 694 

22 281 

90 771 

561 735 
-24 852 

-3 942 036 
-12 186 
-748 458 

-23 921 406 
1 467 609 

2 0  
3 0  
0 3  
2 2  
5 0  
2 3  
6 0  
3 3  
0 6  
5 2  
2 5  
8 0  
5 3  
2 6  
9 0  
6 3  
3 6  
0 9  
8 2  
5 5  
2 8  

1 
-3 
69 
291 
-7 

2 481 
-9 

-8 154 
5 409 

-3 240 
122 901 

-88 
-40 524 
765 057 
-267 

-60 114 
-3 632 430 

366 339 
-81 981 

-4 193 796 
25 296 909 

present author and is described in a recent paper (Oitmaa 1981a). There are 508 graphs 
which contribute to this order. 

In the ferromagnetic regime (J1 > 0, J2 > -iJl) the susceptibility which will diverge 
at the transition is the ordinary ferromagnetic susceptibility XF= Xi ( a ~ a ~ ) .  The high- 
temperature series for this quantity can be written as 

We have evaluated the cmn coefficients for m + n s 10 (1055 graphs) and the values are 
given in table 1. 

In the Potts regime the susceptibility xF is not the ordering susceptibility, and is not 
expected to show a strong divergence. 

q = Aia i  

where hi = 1, -2, -4 for sublattices A, 
susceptibility is then 

3 

i = l  

1 

XP=(V’)=C A j ( a o a j >  
i 

In the ordered phase the order parameter is 

B, C respectively. The appropriate ordering 

(where site 0 is taken on sublattice A), and this can be expanded as 

x p  = 1 + 2 c cp,nu;Iu;. 
mn 

These coefficients are also given in table 1. 
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In a similar way one can define ordering susceptibilities for the other two transition 
lines and obtain series expansions for these. In the present work we have not attempted 
to do this. 

3. Analysis of series 

3.1. The ferromagnetic transition 

In the ferromagnetic regime (J1 > 0, J2 > -kJl), as the temperature is lowered, the 
system will undergo a transition from a disordered to a ferromagnetic phase. The 
critical behaviour is expected to be of the normal Ising form. The critical temperature is 
known exactly for Jz = 0 and increases monotonically with increasing J2. It seems 
reasonable to suppose that when J2 = -&TI, at which point the ferromagnetic state is no 
longer the unique ground state, T, is zero. 

Analysis of the series for the ferromagnetic susceptibility XF should provide an 
estimate of the variation of T, with Jz. To obtain series in a form suitable for analysis we 
define a parameter R = J2 /J1  and, for a given choice of R, obtain series in the single 
variable x = J l / k B T  

X F = 1 +  1 C n X n .  
n = l  

These series can be analysed by standard techniques (Gaunt and Guttmann 1974) to 
determine the critical coupling x c  and exponent y. We have generally used Pad6 
approximants supplemented where appropriate by ratio methods. A typical example is 
the series for R = 1. In figure 2 we show two ratio plots, a direct plot of the ratios 
k,, = C , , / C , , - ~  against l / n  and a plot of the modified ratios g: = npn/(n  +0.75). These 
plots show some residual curvature, indicating that the coefficients have not yet settled 
down to their asymptotic behaviour. However the results are certainly consistent with a 
value of 1.75 for the exponent, as expected from universality, and yield the estimate 
xc = 0.1140* 0.0005. In table 2 we show the Pad6 analysis of the same series. The first 
column gives estimates of X ,  from poles of Pad& approximants (PA) to d In XF/dx while 
remaining columns give estimates of y obtained by evaluating PA to ( x ,  - x )  d In ,yF/dx 
at x = x c  for three different choices of x,. As can be seen the estimates of y are quite 

Figure 2. Ratio plots of the ferromagnetic susceptibility series for Jz = J1. ( a )  plot of the 
direct ratios p. = C , / C , - ~  which should approach x,' linearly with slope y and ( 6 )  plot of 
the modified ratios pg which should approach x i '  with zero slope. 
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Table 2. Pad6 approximant analysis of the ferromagnetic susceptibility series for J2 = JI. 
The first column shows estimates of x,, the other columns estimates of y for three choices of 
x,. An asterisk indicates a defect in the PA. 

Estimates of y 

Estimate of x ,  

0.115 93* 
0.114 53 
0.115 10* 
0.114 57 
0.115 00* 
0.114 97* 
0.114 98* 
0.114 92 
0.114 87 
0.114 96 

x ,  = 0.1140 

1.725 
1.723 
1.722 
1.726 
1.695 
1.740 
1.609 
1.588 
1.510 
1.803 

x ,  = 0.1 145 

1.864 
1.863 
1.862 
1.864 
1.850 
1.863 
1.827 
1.822 
1.801 
1.877 

~ 

x ,  = 0.1 150 

1.958 
1.957 
1.957 
1.957 
1.957 
1.957 
1.957 
1.957 
1.957 
1.958 

sensitive to the choice of x,. The value x c =  0.114, favoured by the ratio plot, yields 
y = 1.72. Making the assumption that y = 1.75 permits a refinement in the estimate of 
x,, obtained by looking for poles in PA to the series for [xF]~”. These results, again for 
the case R = 1, are shown in table 3, and, while there is still some scatter, the PA of 
highest order are consistent with xc = 0.1 14. This procedure has been used to obtain the 
variation of kBTc/J1 with R shown in figure 3. The general behaviour for R > 0 is as 
expected but we have obtained much more precise estimates of T, than had previously 
been available. 

Table 3. Estimates of the ferromagnetic critical *temperature’ x ,  = Jl/kBTc obtained from 
poles of [N, D ]  Pad6 approximants to the series [ ,yFJ(’7 for J2 = J1. An asterisk denotes a 
defect in the PA. 

4 5 6 7 

3 0.116 66 0.114 43 0.114 03 0.114 12 
4 0.11622 0.114 70 0.113 57 0.114 10 
5 cc 0.113 40 0.114 19 
6 0.11341 0.115 77* 
7 0.11411 

For R < 0 the series are more irregular. This is due, at least in part, to the presence 
of a singularity on the negative real axis. The singularity lies on the Potts transition line 
(see figure 1). Consistent estimates of X ,  can still be obtained from PA to [xF]~’~  for 
-0.3 < R < 0 and the plot of kBTc/J1 against R appears to be moving smoothly towards 
T, = 0 at R = -0.5. For R < -0.3 the Potts singularity begins to lie nearer the origin 
than the ferromagnetic singularity, and the Pad6 results become rather inconsistent. 
The use of an Euler transformation to move the Potts singularity further from the origin 
than the physical one results in a marked improvement. We illustrate the analysis for 
the case R = -0.4 in table 4. The series x F ( x )  is very irregular and direct Pad6 analysis 
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Figure 3. Variation of ferromagnetic critical temperature kBT,/J1 with ratio R = J z / J 1 .  
The small square in the inset is the location of the conjectured Lifshitz point. 

does not provide any consistent results at all. The transformed series is much more 
regular and Pad6 analysis of both d In XF(xr)/dxr and [ ~ ~ ( x ’ ) ] ~ ’ ’  yields a consistent pole 
on the real axis at x ‘  2: 0.26 f 0.03. From figure 3 we see that for R < -0.25 the values 
of T, begin to deviate appreciably from the previous trend towards zero at R = -0.5. 
This may, of course, be an artifact due to the series being too short to reflect the true 
singularity behaviour of x in this region. We believe rather that these results may 
indicate the presence of a spatially modulated or ‘sinusoidal’ phase, which separates the 
ferromagnetic and A2 phases at finite temperatures. Such a phase has been predicted in 
simple cubic and square king lattices with competing axial next nearest neighbour 
interactions (the so-called ANNNI models, see e.g. Selke and Fisher (1980)). This model 
has a very similar ground-state degeneracy at R = -0.5. We conjecture therefore that 
there exists a Lifshitz point in this model with approximate position RL = -0.23 -I 0.02. 
For R < -0.4 the series are too irregular to allow any conclusions to be drawn. 

3.2. The Potts transition 

In the regime J1 < 0, J2 > 0 the ordered state is the ‘Potts state’, with the spins on one 
sublattice up and those on the other two down, or vice versa. The ordered phase is 
terminated by a critical line which is expected to have the general form shown in 
figure l(c). The susceptibility xp is expected to diverge along this line. Our series for xp 
is in terms of two variables vl, v2  and in order to carry out the analysis we define a 
parameter R = -J1/Jz  and, for a given choice of R, obtain series in the single variable 
x = J Z / k B T ,  These series are quite regular and can be analysed by both ratio and Pad6 
methods. As an example we consider the series for R = 1. Ratio plots, shown in figure 
4, yield the estimates xc = 0.197 f 0.003, y 1: 2.25. In table 5 we show Pad6 analysis of 
the same series. These results are consistent with the ratio results and our overall 
estimates are xc = 0.198 f 0.002, y = 2.4 k0.02. The high value of y is rather surpris- 
ing, although there is no reason to expect that along this line the critical behaviour 
would be Ising-like. 
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Table 4. Pad6 analysis of the ferromagnetic susceptibility series for R = -0.4. 

( a )  Coefficients of direct series XF(X) for R = -0.4. 

1, 3.6, 6, 3.456, 1.1936, 2.450 688, 76.715 690 6667, 28.680 194 9257, 
-134.324 931 389, -307.648 470 123,1003.644 698 90 

(b) Coefficients of transformed series x ~ ( x ’ )  obtained using the Euler transformation 
x’ = x/( 1 + 2 . 4 ~ ) .  

1, 3.6, 14.64, 52.992, 179.5232, 584.563 968, 1934.615 210 67, 6949.574 249 33, 
27.655 209 284 8,116 612.174 764,490271.461 651 

~~ 

( c )  Estimates of position of singularity xb from poles of [N, D ]  Pad6 approximants to 
d In ,yF(x’)/dx‘. An asterisk denotes a defect in the PA. 

3 4 5 6 

3 0.2715 0.2395 0.2450 
4 0.2721 0.2935* 0.2440 
5 0.2442 0.2458 
6 0.2461 

(d) Estimates of position of singularity x: from poles of [A’, 01 Pad6 approximants to 
[XF(X’)l4’’. 

D \ . 3  4 5 6 7 
~~ 

3 0.3081 0.2836 0.2765 
4 0.31 14 0.2392 0.2736 
5 0.3106 - 0.2754 
6 0.2555 0.2660 
7 0.2666 
Estimate x: = 0.26*0.03 gives xc=  0.7t0.2 

/ , 
/ / o  

// 
/o 

/ 
A 

5 8  P/ 

/ / o  

// 
/o 

/ 
A 

P/ 
/Q 

/ 

/ 
/ 

/ 
/ 

x; ’  = 5 0 6 t 0 0 5  
’I = 2 3  

5 0  
m n- 1 0 9  8 7 6 5 + n- 1 0 9  8 7 6 5 

- 
m i  - 504; 

1 

Figure 4. Ratio plots for the Potts susceptibility series for J1= -Jz. ( a )  plot of the direct 
ratios kn and (b) plot of the modified ratios px = n k , / ( n  + y- 1) with y = 2.3. 

It is of relevance to discuss the general features of the phase diagram in the 
temperature-field plane, as revealed by the Monte Carlo work of Mihura and Landau 
(1977). We sketch this in figure 5 for the case R >O. The line H = 0, T < TM is a 
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Table 5. Pade approximant analysis of the Potts susceptibility series for .TI = -Jz .  The first 
column shows estimates of x,, the other columns estimates of the exponent y for three 
choices of x,. 

Estimate of y 

[N, D] Estimate of x, x, = 0.197 x, = 0.198 x ,  = 0.199 

0.198 72 
0.198 72 
0.198 49 
0.199 17 
0.198 67 
0.198 36 
0.198 34 
0.199 73 
0.198 53 
0.195 75 

2.338 2.412 
3.356 2.546 
2.391 2.421 
2.361 2.418 
2.304 2.411 
2.312 2.413 
2.210 2.405 
2.364 2.426 
2.344 2.418 
2.355 2.430 

2.509 
2.529 
2.511 
2.507 
2.504 
2.504 
2.479 
2.502 
2.500 
2.514 

Figure 5. Phase diagram in the (T, H) plane for the Potts regime (.TI< 0,  .Tz > 0). Along the 
second-order lines the critical behaviour is expected to be Potts-like. 

first-order line separating Potts phases with net magnetisation up or down. For H f 0 
there are second-order lines separating ordered and disordered phases which become 
first order at two symmetrically located tricritical points (TCP). The point (H = 0, T = 
TM) is a multicritical point (MCP). It has been argued that for HfO the critical 
behaviour should be three-state Potts-like (Alexander 1975) with the susceptibility 
exponent presumably taking the value y = y. Our series cannot probe the H f 0 region 
but only the behaviour at the multicritical point, and there is no reason to expect the 
behaviour at this point to be Potts-like. It can be argued on the basis of symmetry, using 
the approach of Domany et aZ(1978), that the critical behaviour should be like the Zg 
model with the susceptibility having an essential singularity of the type x- 
exp [c(l -X /X, ) -~] .  Guttmann (1978) has proposed a method of series analysis which 
should be capable of distinguishing between an essential singularity and an algebraic 
singularity of the usual form x - (1 - x/x,)- ' .  The second logarithmic derivation of ,y is 
expected to have the form 

1 / ( x c  - x )  algebraic 
(y+l)/(xc-x) essential. 

Thus Pade approximants to D t x  should exhibit a pole at x = xc ,  Evaluating PA to 
(xc-x)Dt,y should yield values either near unity if the singularity is algebraic or near 
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y + 1 if the singularity is of the exponential form. In table 6 we show the location of the 
pole and the values of ( x ,  - x)Dtx.  The results clearly indicate that the singularity is 
algebraic. We have also looked for the presence of confluent singularities, which might 
mask the true behaviour, using the inhomogeneous differential approximant technique 
of Rehr et a1 (1980). No evidence is found for confluent singularities. 

The same type of analysis has been carried out for other values of R and the line of 
singularities, or rather the multicritical line, is shown in figure 6. The singularity 
appears to be algebraic with an exponent of y = 2.4 along the entire line. 

Table 6. Pad6 approximant analysis of the second logarithmic derivation of xp for J1 = -J2. 
The first column shows the value of the physical pole, the other columns the values of 
(x,-x)Dixp at x = x, for three choices of x,. An asterisk denotes a defect in the PA. 

[N, D] Estimate of x, x,=0.198 

[2,61 0.2031 
[3,51 0.1992 
r4,41 0.1985 
[5,31 9.2065 
[6,21 0.2246 
[2,51 0.1969 
r3,41 0.1673* 
[4,31 0.1943 
E 2 1  - 

0.967 
0.985 
0.982 
0.983 
0.953 
0.990 
0.988 
0.985 
0.995 

x,=0.1985 

0.983 
0.999 
0.998 
0.998 
0.971 
1.005 
1.001 
0.998 
1.011 

x, = 0.199 

1.001 
1.013 
1.013 
1.013 
0.989 
1.020 
1.014 
1.010 
1.028 

Figure 6. Location of the ferromagnetic critical line and the Potts multicritical line, as 
determined from high-temperature series. The points represent actual estimates, with 
errors estimated to be no larger than the points. 

4. Conclusions 

The main results of the work reported in this paper are the accurate determination of 
the location of the ferromagnetic and Potts critical lines. These results will hopefully 
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prove to be of value in interpreting data on suitable experimental systems as well as 
being useful for further theoretical work. 

We have conjectured that there may exist in this model a spatially modulated phase, 
similar to that which is believed to occur in the ANNNI model. Our evidence for this is 
two-fold - the behaviour of T, as a function of R = J2/J1 in the region R --0.3 is 
suggestive of such a phase as is the type of ground-state degeneracy at R = -0.5. This 
conjecture could be tested in various ways. High-T series for the wavevector depen- 
dent susceptibility ~ ( q )  could be used to locate the high-temperature boundary (see for 
example Redner and Stanley 1977), while the boundary between the ferromagnetic and 
sinusoidal phases could presumably be located by low-temperature series. 

In the region of antiferromagnetic first neighbour and ferromagnetic second neigh- 
bour interactions symmetry arguments suggest that, in non-zero field, the model should 
be in the universality class of the Z3 (three-state Potts) model and, in zero field, that of 
the Z6 model. To test the first of these predictions requires series in a field and these 
cannot be simply obtained using our expansion formalism. As far as the zero field 
behaviour is concerned our series support the existence of a conventional algebraic 
singularity rather than an essential singularity of the Kosterlitz-Thouless form which is 
expected for the Z6 model. The value of the exponent is surprisingly large (-2.4), and 
while this is fairly strong evidence that the behaviour along this line is not Ising-like, the 
true asymptotic form of the singularity remains uncertain. 

Finally it is to be hoped that the present study will stimulate work on this system by 
other complementary methods, such as the Monte Carlo renormalisation group tech- 
nique (Swendsen 1979). 
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